
Two General Purpose Algorithms for Counting

Permutations with Consecutive Sequences

Thomas Becker
thomas@greaterthanzero.com

April 22, 2017

Abstract

We state, prove the correctness of, and discuss the complexity of two
general purpose algorithms, one building upon the other, for counting
permutations with specified configurations of consecutive sequences. The
algorithms are based on a theorem that describes how counting permuta-
tions with consecutive sequences can be reduced to counting permutations
with no consecutive sequences at all.

1 Preface

Combinatorial mathematics is not my specialty as a mathematician. However,
I recently wrote a rather lightweight blog post [4] on the subject of random
shuffle mode on today’s music players. In the process, I needed to know the
number of permutations with certain configurations of consecutive sequences.
The answers to many of my questions were readily available on the Web (see
e.g. [1]), but there were also some questions to which I did not find the answer.
Therefore, I wrote some general-purpose algorithms—based on one core math-
ematical theorem—to conveniently calculate the numbers that I needed. The
algorithms are available on github [3]. I checked the results against brute force
calculations, and, to the extent possible, against the Online Encyclopedia of
Integer Sequences [1] for small numbers of elements. But since the correctness
of the algorithms is far from obvious, I also felt that formal mathematical cor-
rectness proofs should be available. That is the reason why I wrote this paper.
It is quite likely that there is nothing here that combinatorial mathematicians
don’t already know, but again, I was not able to quite find the things I needed
online. Any feedback, particularly regarding references to the literature, would
be much appreciated.

1

2 Introduction

Notation 2.1 If n is an integer with n ≥ 1, we write Pn for the set of all
permutations of the integers 1, 2, . . . , n.

Definition 2.2 Let P ∈ Pn, and let k ≥ 2. A consecutive sequence of
length k in P is a contiguous subsequence of k consecutive integers in P , that
is, a contiguous subsequence of the form (i, i + 1, . . . , i + k − 1). A consecutive
sequence is called maximal if it is not a subsequence of a consecutive sequence
of greater length.

There is a vast body of work regarding the count of permutations that have a
specified configuration of consecutive sequences, such as permutations having a
certain number of consecutive pairs or triples [2]. In this paper, we state, prove
the correctness of, and discuss the complexity of two general purpose algorithms,
one based upon the other, for counting permutations whose maximal consecu-
tive sequences are described in certain ways. The need for these algorithms,
which are available under the MIT license [3], arose from the author’s curiosity
about the behavior of random shuffle mode on today’s music players [4]. The
algorithms do not use the (more generally applicable) inclusion-exclusion prin-
ciple that is often employed for counting permutations with certain properties.
Instead, they rely on a technique of reducing the problem of counting permu-
tations with consecutive sequences to the problem of counting permutations
with no consecutive sequences at all. This technique is a generalized form of an
argument that the author encountered in a Quora post by Jed Yang [5].

Our core algorithms deal with the number of permutations having certain con-
figurations of maximal consecutive sequences. However, as we will show, they
can be employed to answer questions regarding just consecutive sequences as
well.

The organization of the paper and the key results are as follows. In Theorem
3.5, we give an auxiliary algorithm on which the two main algorithms are based.
It calculates the number of permutations that meet a specification of maximal
consecutive sequences by initial elements and lengths. The theorem reduces
that number of permutations to the number of permutations of fewer elements
that have no consecutive sequences at all.

Building on Theorem 3.5, Theorem 4.3 provides an algorithm to count the per-
mutations whose maximal consecutive sequences have been specified by stating
how many exactly of each length there should be. Using that algorithm, one
may, for example, calculate the number of permutations that have exactly three
consecutive pairs, none of which are linked to form a consecutive triple (specify
“three maximal consecutive sequences of length two, zero maximal consecutive
sequences of any other length”). The complexity of the algorithm is O(n ·m),
where m is the number of lengths for which the number of maximal consecutive
sequences has been specified as greater than zero.

2

Building on top of that, Theorem 5.1 describes a generic, customizable algorithm
that iterates over specifications of maximal consecutive sequences by lengths and
counts. A user-supplied function decides if permutations with a given specifi-
cation should be included in the count or not. For example, the user-supplied
function could accept only configurations that specify a non-zero count for max-
imal sequences of length two and a zero count for all other lengths. The result
would be the number of permutations that have any number of consecutive pairs,
but no linked pairs that form larger consecutive sequences. This algorithm is of
course no more than a “glorified brute force algorithm”: instead of iterating over
permutations, we iterate over specifications of maximal consecutive sequences
by lengths and counts. While this is a dramatic improvement (see Section 5 for
details), it is a brute force approach nonetheless. However, our implementation
lets the user exploit the fact that oftentimes, not all specifications of maximal
consecutive sequences by lengths and counts need to be looked at. This can
lead to vastly improved complexity in many cases. In the example that we just
mentioned, the iteration becomes linear in n.

Finally, the last section of this paper discusses how to use our core algorithms,
which deal with maximal consecutive sequences, to answer questions regarding
just plain consecutive sequences.

3 Specifying Maximal Consecutive Sequences by
Lengths And Initial Elements

Definition 3.1 Let n be an integer with n ≥ 1. An MCS-specification by
lengths and initial elements for n is a set of pairs of integers

{ (a1, k1), (a2, k2), . . . , (am, km) }

with the following properties:

(i) ai ≥ 1 and ki ≥ 2 for 1 ≤ i ≤ m,

(ii) ai + ki ≤ ai+1 for 1 ≤ i ≤ m− 1,

(iii) am + (km − 1) ≤ n.

Notation 3.2 If S is an MCS-specification by lenghts and initial elements for
n as in Definition 3.1 above, we write Q(n,S) for the set of all permutations
P ∈ Pn with the following property: for each i with 1 ≤ i ≤ m, P has a
maximal consecutive sequence of length ki that starts with the integer ai, and
P has no other maximal consecutive sequences.

Purpose of this Section Present an auxiliary algorithm, to be used in later
sections, for calculating |Q(n,S)| from n and S.

3

The following technical lemma will be needed when we use induction on m in
connection with MCS-specifications by lengths and initial elements.

Lemma 3.3 Let S be an MCS-specification by lengths and initial elements for
n as in Definition 3.1 above, and assume that m ≥ 1. Then n − (km − 1) ≥ 1,
and

T = { (a1, k1), (a2, k2), . . . , (am−1, km−1) }

is an MCS-specification by lengths and initial elements for n− (km − 1).

Proof From (i) and (iii) of Definition 3.1, we may conclude that

1 ≤ am ≤ n− (km − 1),

which proves the first claim of the lemma. If m = 1, the second claim is trivial
since the empty set is an MCS-specifications by lengths and initial elements for
any positive integer. Now let m > 1. It is clear that T has properties (i) and
(ii) of Definition 3.1. Moreover, we have

am−1 + (km−1 − 1) ≤ am − 1

≤ n− km

≤ n− (km − 1),

and thus T satisfies (iii) of Definition 3.1 as well. �

Notation 3.4 We let Un denote the subset of Pn that consists of all permuta-
tions with no consecutive sequences.

It is well-known (see e.g. [5]) that the cardinality of Un satisfies the recurrence
relation

|Un| = (n− 1) · |Un−1|+ (n− 2) · |Un−2|.

The theorem below provides the desired algorithm for calculating |Q(n,S)| by
reducing the problem to the calculation of |Ur| for a certain r.

Theorem 3.5 Let n ≥ 1, let S = { (a1, k1), (a2, k2), . . . , (am, km) } be an MCS-
specification by lengths and initial elements for n, and let k =

∑m
i=1 ki. Then

|Q(n,S)| = |Un−(k−m)|.

Proof We will prove the theorem by showing that there is a bijection between
Q(n,S) and Un−(k−m). For this, it suffices to show that there are maps

f : Q(n,S) → Un−(k−m) and g : Un−(k−m) → Q(n,S)

such that g ◦ f is the identity on Q(n,S) and f ◦ g is the identity on Un−(k−m).
Intuitively speaking, f is obtained by throwing out all elements of maximal
consecutive sequences except for the initial ones, then adjusting greater elements
of the permutation downward to close the gaps. The map g is the reverse

4

operation of that. For a formal proof of the existence of these maps, we proceed
by induction on m. For m = 0, the claim is trivial as

Un−(k−m) = Un = Q(n,S)

in that case. Now let m > 0, and let

T = { (a1, k1), (a2, k2), . . . , (am−1, km−1) }.

By Lemma 3.3, T is an MCS-specification by lengths and initial elements for
n− (km − 1). This together with the induction hypothesis implies that there is
a bijection between

Q(n−(km−1),T) and U(n−(km−1))−((k−km)−(m−1)) = Un−(k−m).

Therefore, it suffices to construct maps

f : Q(n,S) → Q(n−(km−1),T) and g : Q(n−(km−1),T) → Q(n,S)

such that g◦f is the identity on Q(n,S) and f ◦g is the identity on Q(n−(km−1),T).
For P ∈ Q(n,S), let f(P) be the integer sequence that is obtained from P as
follows:

1. Strike the elements am + 1, am + 2, . . . , am + (km − 1) from P .

2. In the remaining sequence, replace every element a that is greater than
am with a− (km − 1).

For Q ∈ Q(n−(km−1),T), first note that the integer am occurs in the sequence Q
because am ≤ n− (km − 1) by Definition 3.1 (iii). Now let g(Q) be the integer
sequence that is obtained from Q by reversing the procedure that defines f :

1. Replace every element a in Q that is greater than am with a + (km − 1).

2. Augment the resulting sequence by inserting the sequence (am + 1, am +
2, . . . , am + (km − 1)) following the element am.

It is easy to see that f(P) contains exactly the integers 1, 2, . . . , n − (km − 1),
and g(Q) contains exactly the integers 1, 2, . . . , n, and therefore,

f(P) ∈ Pn−(km−1) and g(Q) ∈ Pn.

Also, it is immediate from the definition of f and g that g ◦ f is the identity on
Q(n,S) and f ◦ g is the identity on Q(n−(km−1),T). It remains to show that

f(Q(n,S)) ⊆ Q(n−(km−1),T) and g(Q(n−(km−1),T)) ⊆ Q(n,S).

So let P ∈ Q(n,S). To show that f(P) ∈ Q(n−(km−1),T), we must prove that f(P)
has precisely the maximal consecutive sequences that T specifies. Before delving

5

into that argument, it may be helpful to visualize how f(P) is obtained from P .
Under the action of f , an element of the sequence P may be removed, change
its position, change its value, change both position and value, or change neither
position nor value. The elements am+1, am+2, . . . , am+(k−1), which we know
are positioned consecutively, get removed. The elements that are positioned to
the right of that subsequence, all the way to the end of P , move km−1 positions
to the left. Finally, those elements are greater than am—and the only ones that
are left are actually greater than am + (k− 1)—are decremented by k− 1. You
may also want to remind yourself that the subscript m on am is not indicative
of position in P or f(P). It stems from the MCS-specification S.

Now imagine the sequence f(P) being split in two, with the cut being after
the element am. Let’s call these two pieces P1 and P2. All the integers that
are members of the m − 1 maximal consecutive sequences in P starting with
a1, a2, . . . , am−1 are less than am. Therefore, their values are not changed under
the action of f , and neither are their relative positions. Therefore, each of these
sequences is present as a consecutive sequence in either P1 or P2. As for the
elements in between and around those sequences, in P1 or P2, they are either
less than or equal to am, in which case their value is unchanged under f , or
they are greater than am, in which case they are the result of decrementing in
lockstep, by the same amount, namely, km − 1. Moreover, no relative positions
have changed among any of these under the action of f . It follows that none
of these elements have joined any of the maximal consecutive sequences of P ,
and the only new consecutive pair that could have formed among them would
be (am, am + 1), but that’s impossible since am sits at the end of P1. We see
that the maximal consecutive sequences that we find in P1 and P2 are precisely
those that are specified by T .

It remains to show that no consecutive pair forms between the last element of P1

and the first element of P2 as we join the two to form f(P). The last element of
P1 is am. The first element of P2 is the result of the effect that f had on the first
element following the maximal consecutive sequence am, am+1, . . . , am+(k−1)
in P . That element was either less than am, in which case its value is unchanged,
or it was greater than am + (km − 1) and unequal to am + k, in which case
its value was changed to something not equal to am + 1. In either case, no
consecutive pair forms at the juncture of P1 and P2. This concludes the proof
that f(P) ∈ Q(n−(km−1),T) and thus f(Q(n,S)) ⊆ Q(n−(km−1),T). We leave the
proof of g(Q(n−(km−1),T)) ⊆ Q(n,S) to the reader, as it is little more than the
argument that we just made in reverse. �

Since we know how to calculate the cardinality of Un for any n, the theorem
above gives us an algorithm to calculate the number of permutations of n inte-
gers that have maximal consecutive sequences of specified lengths with specified
initial elements. However, judging from experience, that algorithm isn’t very
interesting. The description of consecutive sequences is just too specific. What
one wants is being able to count the permutations with consecutive sequences or
maximal consecutive sequences that are specified by lengths and counts, as in,
“exactly x number of consecutive triples,” or, “exactly x number of consecutive

6

triples and no longer consecutive sequences,” or some such thing. This will be
achieved in the next two sections.

As for the complexity of the algorithm of Theorem 3.5, it is clear that the
classical recurrence relation for Un that we stated preceding the theorem can
be rewritten as a bottom-up multiplication that calculates Un in constant space
and linear time. Therefore, the complexity of the algorithm of Theorem 3.5 is
O(n).

As an aside, let us mention that Theorem 3.5 continues to hold if instead of spec-
ifying maximal consecutive sequences by initial element and count, we specify
them by initial position and count. This follows from the fact that for n ≥ 1,
the map that exchances value and position is a bijection on Pn. Here, the per-
mutation (a1, a2, . . . , am) maps to the permutation where i is the element at
position ai for 1 ≤ i ≤ n. Under this map, maximal consecutive sequences of
length k with initial element a map to maximal consecutive sequences of length
k that start at position a and vise versa.

4 Specifying Maximal Consecutive Sequences by
Lengths And Counts

Definition 4.1 Let n be an integer with n ≥ 1. An MCS-specification by
lengths and counts for n is a set of pairs of integers

{ (k1, c1), (k2, c2), . . . , (km, cm) }

with the following properties:

(i) ki ≥ 2 and ci ≥ 1 for 1 ≤ i ≤ m,

(ii)
∑m

i=1 ci · ki ≤ n, and

(iii) ki 6= kj for 1 ≤ i, j ≤ m.

Notation 4.2 If T is an MCS-specification by lenghts and counts for n as in
Definition 4.1 above, we writeR(n,T) for the set of all permutations P ∈ Pn with
the following property: for each i with 1 ≤ i ≤ m, P has exactly ci maximal
consecutive sequence of length ki, and P has no other maximal consecutive
sequences.

Purpose of this Section Present an algorithm for calculating |R(n,T)| from
n and T .

It is clear from Definitions 3.1 and 4.1 and the corresponding Notations 3.2 and
4.2 that R(n,T) is the disjoint union of certain Q(n,S), namely, those where S

7

ranges over all those MCS-specifications by lengths and initial elements that are
of the form

S = { (a1, l1), (a2, l2), . . . , (ap, lp) }

with the properties

(i) p =
∑m

i=1 ci, and

(ii) for 1 ≤ i ≤ m, there are exactly ci many j with 1 ≤ j ≤ p and lj = ki.

So if we denote the set of all MCS-specifications by lengths and initial elements
that satisfy (i) and (ii) above by ST , then we have, as a first step towards our
algorithm for calculating |R(n,T)|,

|R(n,T)| =
∑
S∈ST

|Q(n,S)|. (1)

Theorem 3.5 tells us how to calculate |Q(n,S)|, and moreover, the algorithm for
doing so uses only n, p, and

∑p
j=1 lj . It is immediate from properties (i) and

(ii) above that

p =

m∑
i=1

ci and

p∑
j=1

lj =

m∑
i=1

ci · ki.

So if we let c =
∑m

i=1 ci and k =
∑m

i=1 ci · ki, we can extend equation (1) above
to the following second step towards our algorithm for calculating |R(n,T)|:

|R(n,T)| = |ST | · |Un−(k−c)|. (2)

Therefore, all that remains to do is to figure out what |ST | is: how many MCS-
specifications by lengths and initial elements are there that satisfy (i) and (ii)
above? That number is fairly easy to describe: it is the number of ways in which
one can choose subsets A1, A2, . . . , Am ⊂ { 1, 2, . . . , n } such that

(a) |Ai| = ci for 1 ≤ i ≤ m, and

(b) the elements of the Ai are far enough apart so that each a ∈ Ai can be the
initial value of a maximal consecutive sequence of length ki.

At first glance, it may seem difficult to figure out the number of ways in which
the Ai can be chosen. The key to making it easy lies in going back the proof
of the equality |Q(n,S)| = |Un−(k−c)| of Theorem 3.5, which we just used to
pass from equation (1) to equation (2). This equality was proved by exhibit-
ing a bijection between Q(n,S) and Un−(k−c). We mapped permutations with
maximal consecutive sequences to shorter permutations without any consecu-
tive sequences by striking from all maximal consecutive sequences all elements
except for the first one, then renumbering the remaining elements to close the
resulting gaps. The inverse operation consisted of starting with a permutation

8

with no consecutive sequences, then blowing up the specified initial elements to
consecutive sequences by inserting and renumbering elements. At the risk of
being accused of a hand-waving argument, we’ll say that it is now clear that
picking the subsets A1, A2, . . . , Am ⊂ { 1, 2, . . . , n } with properties (a) and (b)
above is equivalent to picking subsets B1, B2, . . . , Bm ⊂ { 1, 2, . . . , n− (k − c) }
with just property (a). The formal proof by induction parallels the proof of
Theorem 3.5 and is simpler than the latter. Counting the ways in which the Bi

can be selected is elementary. The answer is

m∏
i=1

(
n− (k − c)−

∑i−1
j=1 cj

ci

)
,

or, equivalently,
(n− (k − c))!

c1! · c2! · . . . · cm! · (n− k)!
,

or, equivalently,

(n− (k − c)) · (n− (k − c)− 1) · . . . · (n− (k − c)− c + 1)

c1! · c2! · . . . · cm!
.

We have thus proved the following theorem, which provides the desired algo-
rithm for calculating |R(n,T)| from n and T .

Theorem 4.3 Let n ≥ 1, let T = { (k1, c1), (k2, c2), . . . , (km, cm) } be an MCS-
specification by lengths and counts for n, let k =

∑m
i=1 ci·ki, and let c =

∑m
i=1 ci.

Then

|R(n,T)| = |Un−(k−c)| ·
m∏
i=1

(
n− (k − c)−

∑i−1
j=1 cj

ci

)
,

or, equivalently,

|R(n,T)| = |Un−(k−c)| ·
(n− (k − c))!

c1! · c2! · . . . · cm! · (n− k)!
,

or, equivalently,

|R(n,T)| = |Un−(k−c)| ·
(n− (k − c)) · (n− (k − c)− 1) · . . . · (n− (k − c)− c + 1)

c1! · c2! · . . . · cm!
. �

It is clear that the complexity of the algorithm of 4.3 is O(m · n), which, de-
pending on how the ki are defined, can be anything between O(n) and O(n2).

9

5 Iterating over Specifications by Lengths And
Counts

Purpose of this Section Present a generic algorithm for counting the permu-
tations that meet certain specifications by lengths and counts, where a client-
supplied function performs the selection of specifications to be included in the
count.

Now that we know how to calculate |R(n,T)|, that is, the number of permutations
that meet a given specification by lengths and counts, it is an obvious and
rather trivial thing to write an algorithm that performs an in-place creation of
every specification by lengths and counts for a given n and lets a user-provided
function decide which ones should be included in the count. Therefore, the
following theorem requires no further proof.

Theorem 5.1 Let n ≥ 1, let T be the set of all MCS-specifications by lengths
and counts for n, and let f be a function from T to the set { 0, 1 }. Then the
expression ∑

{T∈T | f(T)=1 }

|R(n,T)| (3)

amounts to an algorithm for calculating the number of permutations that meet
exactly those MCS-specifications by lengths and counts for n on which the
function f returns 1. �

The problem with this algorithm is that the number of MCS-specifications by
lengths and counts for n grows faster with n than one would wish. By definition,
the number of these specifications is∣∣{ (k1, c1), (k2, c2), . . . , (km, cm) | ki ≥ 2, ci ≥ 1 for 1 ≤ i ≤ m,

m∑
i=1

ci · ki ≤ n, ki 6= kj for 1 ≤ i, j ≤ m }
∣∣ .

Determining what this is looks like a non-trivial combinatorial problem unto
itself. At this point, the best we know how to do is to look at some numbers. The
brute force approach to counting permutations begins to encounter performance
issues at n = 12, as 12! = 4.79001600× 108, and performance degrades quickly
after that. A comparable number of MCS-specifications by lengths and counts,
namely, 4.83502844 × 108, is reached for n = 108. Indeed, the algorithm of
Theorem 5.1 starts to noticeably slow down for n around 100 [6]. Considering
that 60! is roughly equal to the number of atoms in the known, observable
universe, being able to count permutations for n = 100 must be considered
an achievement. On the other hand, 100 is not exactly, shall we say, a large
number.

10

Luckily, many common questions regarding the number of permutations with
certain consecutive sequences allow an optimization that can cut down drama-
tially on the number of MCS-specifications by lengths and counts that need
to be considered in the sum in (3) above. Typically, when counting permuta-
tions with certain configurations of consecutive pairs, triples, quadruples, etc.
(maximal or not necessarily maximal), one knows in advance that the selec-
tion function f of Theorem 5.1 will reject every MCS-specification by lengths
and counts that specifies a non-zero count for maximal consecutive sequences of
length greater than some bound and/or less than some bound. To exploit that,
our implementation of the algorithm [3] lets the user specify a lower and/or
upper bound for non-zero lengths of maximal consecutive sequences. If l and
u are the specified bounds, then the algorithm will include only those MCS-
specifications by lengths and counts in the sum in (3) above that specify 0 for
any length less than l and greater than u.

For example, when calculating the number of permutations that have maximal
consecutive pairs but no other maximal consecutive sequences, that is, permu-
tations that have any number of consecutive pairs none of which are linked to
form longer consecutive sequences, one would tell the algorithm to only gener-
ate those MCS-specifications by lengths and counts that specify a count greater
than zero for length 2 and a zero count for all lengths greater than 2. This cuts
the length of the sum in (3) above down to bn2 c.
Sometimes, it takes a bit of creativity to avail oneself of the lower bound/upper
bound optimization. Suppose, for example, that you wish to calculate the num-
ber of permutations that have at least one maximal consecutive sequence of
length greater than or equal to k for some k. As it stands, this condition does
not allow you to use the lower bound/upper bound optimization. But you could
also calculate the number of permutations that have no maximal consecutive
sequences greater than or equal to k and then subtract that from n!. Now the
optimization is applicable.

6 Permutations with Consecutive Sequences

The algorithms we have discussed so far deal with the number of permutations
having certain configurations of maximal consecutive sequences. Oftentimes,
one is interested in the number of permutations having certain kinds of—not
necessarily maximal—consecutive sequences. Adapting our algorithms for that
purpose is rather straightforward, and in some cases trivial. For a trivial case,
consider the question, “How many permutations are there in Pn that have con-
secutive sequences of length k?” Having a consecutive sequence of length k is
obviously equivalent to having a maximal consecutive sequence of length greater
than or equal to k. Therefore, this is the application of Theorem 5.1 that we
mentioned at the end of the previous section.

Perhaps the most commonly asked question about consecutive sequences is,

11

“How many permutations are there in Pn that have c many consecutive se-
quences of length k?” To use our algorithms for answering this question, we
need the following lemma whose proof is trivial.

Lemma 6.1 Let n ≥ 1, let T = { (k1, c1), (k2, c2), . . . , (km, cm) } be an MCS-
specification by lengths and counts for n. Furthermore, let P ∈ R(n,T), that
is, P is a permutation that meets the specification T , and let k ≥ 2. Then the
number of consecutive sequences of length k in P equals

m∑
i=1
ki≥k

ci · (ki − k + 1) .

It is now a straightforward task to count the permutations that have exactly c
consecutive sequences of length k: apply Theorem 5.1 with a selection function
that employs the lemma above to accept exactly those MCS-specifications by
lengths and counts that result in c consecutive sequences. Note also that the
upper bound optimization that we mentioned following Theorem 5.1 is applica-
ble here. That’s because we know that any MCS-specification by lengths and
count that specifies a non-zero count for a length l with l > k + c − 1 will be
rejected. Therefore, we only need to look at MCS-specifications by lengths and
counts that specify a zero count for lengths greater than k+c−1. Our algorithm
package on github [3] has a ready-to-use implementation.

References and Notes

[1] Online Encyclopedia of Integer Sequences

[2] Even if the author’s mathematical specialty were combinatorics, which it is
not, it would be foolish to attempt an overview or an even remotely complete
set of references in a short article like this. A good place to learn about
existing results and start finding references is the Online Encyclopedia of
Integer Sequences, specifically the entries A010027, A002628, and A0000255.

[3] ConsecutiveSequences on github.

[4] Some Mathematics, Algorithms, and Probabilities Concerning Your Music
Players Random Shuffle Mode at the GreaterThanZero company blog.

[5] This proof by Jed Yang on Quora is short, elegant, and self-contained.

[6] This is assuming that only a small number of MCS-specifications are ac-
cepted for the count. If many are accepted, the slowdown can begin as early
as n = 75.

12

http://oeis.org/
http://oeis.org/
http://oeis.org/
http://oeis.org/A010027
http://oeis.org/A002628
http://oeis.org/A000255
https://github.com/walkswiththebear/ConsecutiveSequences
http://blog.greaterthanzero.com/post/159874910652/some-mathematics-algorithms-and-probabilities
http://blog.greaterthanzero.com/post/159874910652/some-mathematics-algorithms-and-probabilities
https://www.quora.com/What-is-the-probability-that-a-shuffled-music-album-will-have-at-least-two-songs-in-their-original-relative-consecutive-order

	Preface
	Introduction
	Specifying Maximal Consecutive Sequences by Lengths And Initial Elements
	Specifying Maximal Consecutive Sequences by Lengths And Counts
	Iterating over Specifications by Lengths And Counts
	Permutations with Consecutive Sequences

